Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 610(7932): 513-518, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224387

RESUMEN

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Política Ambiental , Biodiversidad , Biota , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Política Ambiental/legislación & jurisprudencia , Política Ambiental/tendencias , Objetivos , Naciones Unidas , Animales
2.
Sci Adv ; 5(11): eaaw4418, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31799387

RESUMEN

Alternatives to ecologically devastating deforestation land use change trajectories are needed to reduce the carbon footprint of oil palm (OP) plantations in the tropics. Although various land use change options have been proposed, so far, there are no empirical data on their long-term ecosystem carbon pools effects. Our results demonstrate that pasture-to-OP conversion in savanna regions does not change ecosystem carbon storage, after 56 years in Colombia. Compared to rainforest conversion, this alternative land use change reduces net ecosystem carbon losses by 99.7 ± 9.6%. Soil organic carbon (SOC) decreased until 36 years after conversion, due to a fast decomposition of pasture-derived carbon, counterbalancing the carbon gains in OP biomass. The recovery of topsoil carbon content, suggests that SOC stocks might partly recover during a third plantation cycle. Hence, greater OP sustainability can be achieved if its expansion is oriented toward pasture land.


Asunto(s)
Secuestro de Carbono , Conservación de los Recursos Naturales/estadística & datos numéricos , Bosque Lluvioso , Agricultura , Biomasa , Carbono/análisis , Colombia , Ecosistema , Ambiente , Suelo/química
3.
Environ Manage ; 60(2): 176-184, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28624912

RESUMEN

A growing population with increasing consumption of milk and dairy require more agricultural output in the coming years, which potentially competes with forests and other natural habitats. This issue is particularly salient in the tropics, where deforestation has traditionally generated cattle pastures and other commodity crops such as corn and soy. The purpose of this article is to review the concepts and discussion associated with reconciling food production and conservation, and in particular with regards to cattle production, including the concepts of land-sparing and land-sharing. We then present these concepts in the specific context of Colombia, where there are efforts to increase both cattle production and protect tropical forests, in order to discuss the potential for landscape planning for sustainable cattle production. We outline a national planning approach, which includes disaggregating the diverse cattle sector and production types, identifying biophysical, and economic opportunities and barriers for sustainable intensification in cattle ranching, and analyzing areas suitable for habitat restoration and conservation, in order to plan for both land-sparing and land-sharing strategies. This approach can be used in other contexts across the world where there is a need to incorporate cattle production into national goals for carbon sequestration and habitat restoration and conservation.


Asunto(s)
Crianza de Animales Domésticos/métodos , Conservación de los Recursos Naturales/métodos , Bosques , Ganado/crecimiento & desarrollo , Crianza de Animales Domésticos/economía , Animales , Secuestro de Carbono , Bovinos , Colombia , Conservación de los Recursos Naturales/economía , Productos Agrícolas/crecimiento & desarrollo , Humanos , Clima Tropical , Zea mays/crecimiento & desarrollo
4.
Environ Manage ; 60(1): 86-103, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28421267

RESUMEN

Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Bosques , Modelos Teóricos , Tracheophyta/crecimiento & desarrollo , Altitud , Biodiversidad , México
5.
Environ Monit Assess ; 188(8): 495, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27473109

RESUMEN

Ulex europaeus (gorse) is an invasive shrub deemed as one of the most invasive species in the world. U. europaeus is widely distributed in the south-central area of Chile, which is considered a world hotspot for biodiversity conservation. In addition to its negative effects on the biodiversity of natural ecosystems, U. europaeus is one of the most severe pests for agriculture and forestry. Despite its importance as an invasive species, U. europaeus has been little studied. Although information exists on the potential distribution of the species, the interaction of the invasion process with the spatial dynamic of the landscape and the landscape-scale factors that control the presence or absence of the species is still lacking. We studied the spatial and temporal dynamics of the landscape and how these relate to U. europaeus invasion in south-central Chile. We used supervised classification of satellite images to determine the spatial distribution of the species and other land covers for the years 1986 and 2003, analysing the transitions between the different land covers. We used logistic regression for modelling the increase, decrease and permanence of U. europaeus invasion considering landscape variables. Results showed that the species covers only around 1 % of the study area and showed a 42 % reduction in area for the studied period. However, U. europaeus was the cover type which presented the greatest dynamism in the landscape. We found a strong relationship between changes in land cover and the invasion process, especially connected with forest plantations of exotic species, which promotes the displacement of U. europaeus. The model of gorse cover increase presented the best performance, and the most important predictors were distance to seed source and landscape complexity index. Our model predicted high spread potential of U. europaeus in areas of high conservation value. We conclude that proper management for this invasive species must take into account the spatial dynamics of the landscape within the invaded area in order to address containment, control or mitigation of the invasion.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Agricultura Forestal , Especies Introducidas , Ulex/crecimiento & desarrollo , Agricultura , Biodiversidad , Chile , Ecosistema , Bosques , Modelos Teóricos
6.
PLoS One ; 7(8): e43943, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952816

RESUMEN

BACKGROUND: Monitoring land change at multiple spatial scales is essential for identifying hotspots of change, and for developing and implementing policies for conserving biodiversity and habitats. In the high diversity country of Colombia, these types of analyses are difficult because there is no consistent wall-to-wall, multi-temporal dataset for land-use and land-cover change. METHODOLOGY/PRINCIPAL FINDINGS: To address this problem, we mapped annual land-use and land-cover from 2001 to 2010 in Colombia using MODIS (250 m) products coupled with reference data from high spatial resolution imagery (QuickBird) in Google Earth. We used QuickBird imagery to visually interpret percent cover of eight land cover classes used for classifier training and accuracy assessment. Based on these maps we evaluated land cover change at four spatial scales country, biome, ecoregion, and municipality. Of the 1,117 municipalities, 820 had a net gain in woody vegetation (28,092 km(2)) while 264 had a net loss (11,129 km(2)), which resulted in a net gain of 16,963 km(2) in woody vegetation at the national scale. Woody regrowth mainly occurred in areas previously classified as mixed woody/plantation rather than agriculture/herbaceous. The majority of this gain occurred in the Moist Forest biome, within the montane forest ecoregions, while the greatest loss of woody vegetation occurred in the Llanos and Apure-Villavicencio ecoregions. CONCLUSIONS: The unexpected forest recovery trend, particularly in the Andes, provides an opportunity to expand current protected areas and to promote habitat connectivity. Furthermore, ecoregions with intense land conversion (e.g. Northern Andean Páramo) and ecoregions under-represented in the protected area network (e.g. Llanos, Apure-Villavicencio Dry forest, and Magdalena-Urabá Moist forest ecoregions) should be considered for new protected areas.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Árboles , Agricultura , Ciudades/estadística & datos numéricos , Colombia , Fenómenos Ecológicos y Ambientales , Análisis Espacio-Temporal
7.
PLoS One ; 3(7): e2586, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18596914

RESUMEN

BACKGROUND: The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities. METHODOLOGY/PRINCIPAL FINDINGS: We investigate the importance of formulating conservation planning problems with objectives and cost data that relate to specific conservation actions. We identify priority areas in Australia for two alternative conservation actions: land acquisition and stewardship. Our analyses show that using the cost surrogate that most closely reflects the planned conservation action can cut the cost of achieving our biodiversity goals by half. We highlight spatial differences in relative priorities for land acquisition and stewardship in Australia, and provide a simple approach for determining which action should be undertaken where. CONCLUSIONS/SIGNIFICANCE: Our study shows that a poorly posed conservation problem that fails to pre-specify the planned conservation action and incorporate cost a priori can lead to expensive mistakes. We can be more efficient in achieving conservation goals by clearly specifying our conservation objective and parameterising the problem with economic data that reflects this objective.


Asunto(s)
Conservación de los Recursos Naturales/economía , Australia , Biodiversidad , Conservación de los Recursos Naturales/métodos , Análisis Costo-Beneficio , Ecosistema , Sistemas de Información Geográfica , Objetivos Organizacionales
8.
J Environ Manage ; 79(1): 74-87, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16171932

RESUMEN

In biologically mega-diverse countries that are undergoing rapid human landscape transformation, it is important to understand and model the patterns of land cover change. This problem is particularly acute in Colombia, where lowland forests are being rapidly cleared for cropping and ranching. We apply a conceptual model with a nested set of a priori predictions to analyse the spatial and temporal patterns of land cover change for six 50-100 km(2) case study areas in lowland ecosystems of Colombia. Our analysis included soil fertility, a cost-distance function, and neighbourhood of forest and secondary vegetation cover as independent variables. Deforestation and forest regrowth are tested using logistic regression analysis and an information criterion approach to rank the models and predictor variables. The results show that: (a) overall the process of deforestation is better predicted by the full model containing all variables, while for regrowth the model containing only the auto-correlated neighbourhood terms is a better predictor; (b) overall consistent patterns emerge, although there are variations across regions and time; and (c) during the transformation process, both the order of importance and significance of the drivers change. Forest cover follows a consistent logistic decline pattern across regions, with introduced pastures being the major replacement land cover type. Forest stabilizes at 2-10% of the original cover, with an average patch size of 15.4 (+/-9.2)ha. We discuss the implications of the observed patterns and rates of land cover change for conservation planning in countries with high rates of deforestation.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Agricultura Forestal , Sistemas de Información Geográfica , Agricultura , Colombia , Predicción , Humanos , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...